Weisfeiler-Lehman Graph Kernels
نویسندگان
چکیده
In this article, we propose a family of efficient kernels for large graphs with discrete node labels. Key to our method is a rapid feature extraction scheme based on the Weisfeiler-Lehman test of isomorphism on graphs. It maps the original graph to a sequence of graphs, whose node attributes capture topological and label information. A family of kernels can be defined based on this Weisfeiler-Lehman sequence of graphs, including a highly efficient kernel comparing subtree-like patterns. Its runtime scales only linearly in the number of edges of the graphs and the length of the Weisfeiler-Lehman graph sequence. In our experimental evaluation, our kernels outperform state-of-the-art graph kernels on several graph classification benchmark data sets in terms of accuracy and runtime. Our kernels open the door to large-scale applications of graph kernels in various disciplines such as computational biology and social network analysis.
منابع مشابه
Global Weisfeiler-Lehman Kernel
Most state-of-the-art graph kernels only take local graph properties into account, i.e., the kernel is computed with regard to properties of the neighborhood of vertices or other small substructures only. On the other hand, kernels that do take global graph properties into account may not scale well to large graph databases. Here we propose to start exploring the space between local and global ...
متن کاملGraph Invariant Kernels
We introduce a novel kernel that upgrades the Weisfeiler-Lehman and other graph kernels to effectively exploit highdimensional and continuous vertex attributes. Graphs are first decomposed into subgraphs. Vertices of the subgraphs are then compared by a kernel that combines the similarity of their labels and the similarity of their structural role, using a suitable vertex invariant. By changing...
متن کاملGraph Kernels Exploiting Weisfeiler-Lehman Graph Isomorphism Test Extensions
In this paper we present a novel graph kernel framework inspired the by the Weisfeiler-Lehman (WL) isomorphism tests. Any WL test comprises a relabelling phase of the nodes based on test-specific information extracted from the graph, for example the set of neighbours of a node. We defined a novel relabelling and derived two kernels of the framework from it. The novel kernels are very fast to co...
متن کاملA Fast Approximation of the Weisfeiler-Lehman Graph Kernel for RDF Data
We introduce an approximation of the Weisfeiler-Lehman graph kernel algorithm aimed at improving the computation time of the kernel when applied to Resource Description Framework (RDF) data. RDF is the representation/storarge format of the semantic web and it essentially represents a graph. One direction for learning from the semantic web is using graph kernel methods on RDF. This is a very gen...
متن کاملThe pyramid quantized Weisfeiler-Lehman graph representation
Graphs are flexible and powerful representations for non-vectorial data with inherited structure. Exploiting these data requires the ability to efficiently represent and compare graphs. Unfortunately, standard solutions to these problems are either NP-hard, hard to parametrize or not expressive enough. Graph kernels, that have been introduced in the machine learning community the last decade, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 12 شماره
صفحات -
تاریخ انتشار 2011